Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nanoscale Adv ; 6(4): 1145-1162, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356633

RESUMO

Streptococcus pyogenes is a causative agent for strep throat, impetigo, and more invasive diseases. The main reason for the treatment failure of streptococcal infections is increased antibiotic resistance. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been rising with a significant impact on public health and the veterinary industry. The development of antibiotic resistance and the resulting emergence of multidrug-resistant bacteria have become primary threats to the public health system, commonly leading to nosocomial infections. Many researchers have turned their focus to developing alternative classes of antibacterial agent based on various nanomaterials. We have developed an antibiotic-free nanoparticle system inspired by naturally occurring bacteriophages to fight antibiotic-resistant bacteria. Our phage-mimicking nanoparticles (PhaNPs) display structural mimicry of protein-turret distribution on the head structure of bacteriophages. By mimicking phages, we can take advantage of their evolutionary constant shape and high antibacterial activity while avoiding the immune reactions of the human body experienced by biologically derived phages. We describe the synthesis of hierarchically arranged core-shell nanoparticles, with a silica core conjugated with silver-coated gold nanospheres to which we have chemisorbed the synthetic antimicrobial peptide Syn-71 on the PhaNPs surface, and increased the rapidity of the antibacterial activity of the nanoparticles (PhaNP@Syn71). The antibacterial effect of the PhaNP@Syn71 was tested in vitro and in vivo in mouse wound infection models. In vitro, results showed a dose-dependent complete inhibition of bacterial growth (>99.99%). Cytocompatibility testing on HaCaT human skin keratinocytes showed minimal cytotoxicity of PhaNP@Syn71, being comparable to the vehicle cytotoxicity levels even at higher concentrations, thus proving that our design is biocompatible with human cells. There was a minimum cutoff dosage above which there was no evolution of resistance after prolonged exposure to sub-MIC dosages of PhaNP@Syn71. Application of PhaNP@Syn71 to a mouse wound infection model exhibited high biocompatibility in vivo while showing immediate stabilization of the wound size, and infection free wound healing. Our results suggest the robust utility of antimicrobial peptide-conjugated phage-mimicking nanoparticles as a highly effective antibacterial system that can combat bacterial infections consistently while avoiding the emergence of resistant bacterial strains.

3.
Microbiol Spectr ; 10(6): e0265822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36342284

RESUMO

Leishmaniasis, a category I neglected tropical disease, is a group of diseases caused by the protozoan parasite Leishmania species with a wide range of clinical manifestations. Current treatment options can be highly toxic and expensive, with drug relapse and the emergence of resistance. Bacteriocins, antimicrobial peptides ribosomally produced by bacteria, are a relatively new avenue for potential antiprotozoal drugs. Particular interest has been focused on enterocin AS-48, with previously proven efficacy against protozoan species, including Leishmania spp. Sequential characterization of enterocin AS-48 has illustrated that antibacterial bioactivity is preserved in linearized, truncated forms; however, minimal domains of AS-48 bacteriocins have not yet been explored against protozoans. Using rational design techniques to improve membrane penetration activity, we designed peptide libraries using the minimal bioactive domain of AS-48 homologs. Stepwise changes to the charge (z), hydrophobicity (H), and hydrophobic dipole moment (µH) were achieved through lysine and tryptophan substitutions and the inversion of residues within the helical wheel, respectively. A total of 480 synthetic peptide variants were assessed for antileishmanial activity against Leishmania donovani. One hundred seventy-two peptide variants exhibited 50% inhibitory concentration (IC50) values below 20 µM against axenic amastigotes, with 60 peptide variants in the nanomolar range. Nine peptide variants exhibited potent activity against intracellular amastigotes with observed IC50 values of <4 µM and limited in vitro host cell toxicity, making them worthy of further drug development. Our work demonstrates that minimal bioactive domains of naturally existing bacteriocins can be synthetically engineered to increase membrane penetration against Leishmania spp. with minimal host cytotoxicity, holding the promise of novel, potent antileishmanial therapies. IMPORTANCE Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. There are three primary clinical forms, cutaneous, mucocutaneous, and visceral, with visceral leishmaniasis being fatal if left untreated. Current drug treatments are less than ideal, especially in resource-limited areas, due to the difficult administration and treatment regimens as well as the high cost and the emergence of drug resistance. Identifying potent antileishmanial agents is of the utmost importance. We utilized rational design techniques to synthesize enterocin AS-48 and AS-48-like bacteriocin-based peptides and screened these peptides against L. donovani using a fluorescence-based phenotypic assay. Our results suggest that bacteriocins, specifically these rationally designed AS-48-like peptides, are promising leads for further development as antileishmanial drugs.


Assuntos
Antiprotozoários , Bacteriocinas , Leishmania donovani , Leishmaniose , Humanos , Bacteriocinas/farmacologia , Bacteriocinas/uso terapêutico , Leishmaniose/tratamento farmacológico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Antiprotozoários/farmacologia
4.
Front Cell Infect Microbiol ; 12: 1002230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389147

RESUMO

Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that employs several secreted and surface-bound virulence factors to manipulate its environment, allowing it to cause a variety of disease outcomes. One such virulence factor is Streptolysin S (SLS), a ribosomally-produced peptide toxin that undergoes extensive post-translational modifications. The activity of SLS has been studied for over 100 years owing to its rapid and potent ability to lyse red blood cells, and the toxin has been shown to play a major role in GAS virulence in vivo. We have previously demonstrated that SLS induces hemolysis by targeting the chloride-bicarbonate exchanger Band 3 in erythrocytes, indicating that SLS is capable of targeting host proteins to promote cell lysis. However, the possibility that SLS has additional protein targets in other cell types, such as keratinocytes, has not been explored. Here, we use bioinformatics analysis and chemical inhibition studies to demonstrate that SLS targets the electroneutral sodium-bicarbonate cotransporter NBCn1 in keratinocytes during GAS infection. SLS induces NF-κB activation and host cytotoxicity in human keratinocytes, and these processes can be mitigated by treating keratinocytes with the sodium-bicarbonate cotransport inhibitor S0859. Furthermore, treating keratinocytes with SLS disrupts the ability of host cells to regulate their intracellular pH, and this can be monitored in real time using the pH-sensitive dye pHrodo Red AM in live imaging studies. These results demonstrate that SLS is a multifunctional bacterial toxin that GAS uses in numerous context-dependent ways to promote host cell cytotoxicity and increase disease severity. Studies to elucidate additional host targets of SLS have the potential to impact the development of therapeutics for severe GAS infections.


Assuntos
Infecções Estreptocócicas , Estreptolisinas , Humanos , Estreptolisinas/toxicidade , Estreptolisinas/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes , Queratinócitos/metabolismo , Inflamação
5.
Curr Drug Targets ; 23(17): 1555-1566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35748550

RESUMO

SARS-CoV2, Severe acute respiratory syndrome coronavirus 2, is a novel member of the human coronavirus family that has recently emerged worldwide to cause COVID-19 disease. COVID-19 disease has been declared a worldwide pandemic with over 270 million total cases, and >5 million deaths as of this writing. Although co-morbidities and preexisting conditions have played a significant role in the severity of COVID-19, the hallmark feature of severe disease associated with SARS-CoV2 is respiratory failure. Recent findings have demonstrated a key role for endothelial dysfunction caused by SARS-CoV2 in these clinical outcomes, characterized by endothelial inflammation, the persistence of a pro-coagulative state, and major recruitment of leukocytes and other immune cells to localized areas of endothelial dysfunction. Though it is generally recognized that endothelial impairment is a major contributor to COVID-19 disease, studies to examine the initial cellular events involved in triggering endothelial dysfunction are needed. In this article, we review the general strategy of pathogens to exploit endothelial cells and the endothelium to cause disease. We discuss the role of the endothelium in COVID-19 disease and highlight very recent findings that identify key signaling and cellular events that are associated with the initiation of SARS-CoV2 infection. These studies may reveal specific molecular pathways that can serve as potential means of therapeutic development against COVID-19 disease.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Células Endoteliais , RNA Viral
6.
Front Microbiol ; 13: 905670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685926

RESUMO

The proteolytic activity of human plasmin (hPm) is utilized by various cells to provide a surface protease that increases the potential of cells to migrate and disseminate. Skin-trophic Pattern D strains of Streptococcus pyogenes (GAS), e.g., GAS isolate AP53, contain a surface M-protein (PAM) that directly and strongly interacts (Kd ~ 1 nM) with human host plasminogen (hPg), after which it is activated to hPm by a specific coinherited bacterial activator, streptokinase (SK2b), or by host activators. Another ubiquitous class of hPg binding proteins on GAS cells includes "moonlighting" proteins, such as the glycolytic enzyme, enolase (Sen). However, the importance of Sen in hPg acquisition, especially when PAM is present, has not been fully developed. Sen forms a complex with hPg on different surfaces, but not in solution. Isogenic AP53 cells with a targeted deletion of PAM do not bind hPg, but the surface expression of Sen is also greatly diminished upon deletion of the PAM gene, thus confounding this approach for defining the role of Sen. However, cells with point deletions in PAM that negate hPg binding, but fully express PAM and Sen, show that hPg binds weakly to Sen on GAS cells. Despite this, Sen does not stimulate hPg activation by SK2b, but does stimulate tissue-type plasminogen activator-catalyzed activation of hPg. These data demonstrate that PAM plays the dominant role as a functional hPg receptor in GAS cells that also contain surface enolase.

7.
J Biol Chem ; 298(6): 101940, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430253

RESUMO

Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Parede Celular , Streptococcus pyogenes , Aminoaciltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Cisteína Endopeptidases , Mutação , Streptococcus pyogenes/classificação , Streptococcus pyogenes/enzimologia
8.
Curr Pharm Teach Learn ; 14(1): 23-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35125191

RESUMO

INTRODUCTION: In 2017, a revamped bachelor of pharmacy program was introduced at Monash University and incorporated a predominantly flipped classroom-based pedagogy. The attitudes and preferences of students towards this program had yet to be assessed using a reliable instrument. Since no instrument was readily available, the objective of this study was to identify, contextualize, and validate a suitable instrument. METHODS: We conducted a literature search to identify and adapt a validated instrument. Cognitive interviews were conducted to examine students' understanding of scales and definitions of items. The instrument was then evaluated by education experts for further refinement. The reliability of the final instrument was assessed in a cohort of students, and unsuitable items were removed. RESULTS: Students had issues understanding the scales and specific terms used in the original instrument, potentially due to differences in terminologies used in the university's context and variance in English proficiency levels and exposure. In the preference domain, wording of the instrument to present exclusively traditional classroom or exclusively flipped classroom statements greatly influenced its reliability. This could be due to exposure of students to a predominantly flipped classroom environment since inception. The final instrument optimized in this study had α = 0.85, 0.86, and 0.9 for the pre-activities, in-class lectures, and in-class workshops attitude domains, respectively, and α = 0.73 for the preference domain. CONCLUSIONS: Our study highlights the necessity of contextualizing instruments to fit the local context in which they are administered and provides key recommendations when conducting such adaptations.


Assuntos
Atitude , Estudantes , Estudos de Coortes , Humanos , Reprodutibilidade dos Testes , Universidades
9.
Microbiologyopen ; 10(6): e1252, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964287

RESUMO

The direct binding of human plasminogen (hPg), via its kringle-2 domain (K2hPg ), to streptococcal M-protein (PAM), largely contributes to the pathogenesis of Pattern D Group A Streptococcus pyogenes (GAS). However, the mechanism of complex formation is unknown. In a system consisting of a Class II PAM from Pattern D GAS isolate NS88.2 (PAMNS88.2 ), with one K2hPg binding a-repeat in its A-domain, we employed biophysical techniques to analyze the mechanism of the K2hPg /PAMNS88.2 interaction. We show that apo-PAMNS88.2 is a coiled-coil homodimer (M.Wt. ~80 kDa) at 4°C-25°C, and is monomeric (M.Wt. ~40 kDa) at 37°C, demonstrating a temperature-dependent dissociation of PAMNS88.2 over a narrow temperature range. PAMNS88.2 displayed a single tight binding site for K2hPg at 4°C, which progressively increased at 25°C through 37°C. We isolated the K2hPg /PAMNS88.2 complexes at 4°C, 25°C, and 37°C and found molecular weights of ~50 kDa at each temperature, corresponding to a 1:1 (m:m) K2hPg /PAMNS88.2  monomer complex. hPg activation experiments by streptokinase demonstrated that the hPg/PAMNS88.2  monomer complexes are fully functional. The data show that PAM dimers dissociate into functional monomers at physiological temperatures or when presented with the active hPg module (K2hPg ) showing that PAM is a functional monomer at 37°C.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Kringles , Plasminogênio/química , Plasminogênio/metabolismo , Streptococcus pyogenes/metabolismo , Sítios de Ligação , Humanos , Peso Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Estreptoquinase/metabolismo , Temperatura , Termodinâmica
10.
Front Microbiol ; 12: 734216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646254

RESUMO

Bacteriocins are a highly diverse group of antimicrobial peptides that have been identified in a wide range of commensal and probiotic organisms, especially those resident in host microbiomes. Rising antibiotic resistance have fueled renewed research into new drug scaffolds such as antimicrobial peptides for use in therapeutics. In this investigation, we examined mung bean seeds for endophytes possessing activity against human and plant pathogens. We isolated a novel strain of Bacillus safensis, from the contents of surface-sterilized mung bean seed, which we termed B. safensis C3. Genome sequencing of C3 identified three distinct biosynthetic systems that produce bacteriocin-based peptides. C3 exhibited antibacterial activity against Escherichia coli, Xanthomonas axonopodis, and Pseudomonas syringae. Robust antimicrobial activity of B. safensis C3 was observed when C3 was co-cultured with Bacillus subtilis. Using the cell-free supernatant of C3 and cation exchange chromatography, we enriched a product that retained antimicrobial activity against B. subtilis. The peptide was found to be approximately 3.3 kDa in size by mass spectrometry, and resistant to proteolysis by Carboxypeptidase Y and Endoproteinase GluC, suggesting that it is a modified variant of an AS-48 like bacteriocin. Our findings open new avenues into further development of novel bacteriocin-based scaffolds for therapeutic development, as well as further investigations into how our discoveries of bacteriocin-producing plant commensal microorganisms may have the potential for an immediate impact on the safety of food supplies.

11.
Front Cardiovasc Med ; 8: 667554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179133

RESUMO

Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin ß1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.

12.
J Biol Chem ; 296: 100099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208461

RESUMO

Virulent strains of Streptococcus pyogenes (gram-positive group A Streptococcus pyogenes [GAS]) recruit host single-chain human plasminogen (hPg) to the cell surface-where in the case of Pattern D strains of GAS, hPg binds directly to the cells through a surface receptor, plasminogen-binding group A streptococcal M-protein (PAM). The coinherited Pattern D GAS-secreted streptokinase (SK2b) then accelerates cleavage of hPg at the R561-V562 peptide bond, resulting in the disulfide-linked two-chain protease, human plasmin (hPm). hPm localizes on the bacterial surface, assisting bacterial dissemination via proteolysis of host defense proteins. Studies using isolated domains from PAM and hPg revealed that the A-domain of PAM binds to the hPg kringle-2 module (K2hPg), but how this relates to the function of the full-length proteins is unclear. Herein, we use intact proteins to show that the lysine-binding site of K2hPg is a major determinant of the activation-resistant T-conformation of hPg. The binding of PAM to the lysine-binding site of K2hPg relaxes the conformation of hPg, leading to a greatly enhanced activation rate of hPg by SK2b. Domain swapping between hPg and mouse Pg emphasizes the importance of the Pg latent heavy chain (residues 1-561) in PAM binding and shows that while SK2b binds to both hPg and mouse Pg, the activation properties of streptokinase are strictly attributed to the serine protease domain (residues 562-791) of hPg. Overall, these data show that native hPg is locked in an activation-resistant conformation that is relaxed upon its direct binding to PAM, allowing hPm to form and provide GAS cells with a proteolytic surface.


Assuntos
Proteínas de Bactérias/metabolismo , Plasminogênio/química , Plasminogênio/metabolismo , Estreptoquinase/química , Estreptoquinase/metabolismo , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Humanos , Camundongos , Ligação Proteica , Infecções Estreptocócicas/metabolismo , Virulência
13.
Cell Rep ; 33(9): 108438, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264626

RESUMO

Phenotypic and functional plasticity of brain immune cells contribute to brain tissue homeostasis and disease. Immune cell plasticity is profoundly influenced by tissue microenvironment cues and systemic factors. Aging and gut microbiota dysbiosis that reshape brain immune cell plasticity and homeostasis has not been fully delineated. Using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq), we analyze compositional and transcriptional changes of the brain immune landscape in response to aging and gut dysbiosis. Discordance between canonical surface-marker-defined immune cell types and their transcriptomes suggest transcriptional plasticity among immune cells. Ly6C+ monocytes predominate a pro-inflammatory signature in the aged brain, while innate lymphoid cells (ILCs) shift toward an ILC2-like profile. Aging increases ILC-like cells expressing a T memory stemness (Tscm) signature, which is reduced through antibiotics-induced gut dysbiosis. Systemic changes due to aging and gut dysbiosis increase propensity for neuroinflammation, providing insights into gut dysbiosis in age-related neurological diseases.


Assuntos
Encéfalo/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade Inata/imunologia , Análise de Célula Única/métodos , Animais , Humanos
14.
Front Microbiol ; 11: 589666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281785

RESUMO

The circularized bacteriocin enterocin AS-48 produced by Enterococcus sp. exhibits antibacterial activity through membrane disruption. The membrane-penetrating activity of enterocin AS-48 has been attributed to a specific alpha-helical region on the circular peptide. Truncated, linearized forms containing these domains have been shown to preserve limited bactericidal activity. We utilized the amino acid sequence of the active helical domain of enterocin AS-48 to perform a homology-based search of similar sequences in other bacterial genomes. We identified similar domains in three previously uncharacterized AS-48-like bacteriocin genes in Clostridium sordellii, Paenibacillus larvae, and Bacillus xiamenensis. Enterocin AS-48 and homologs from these bacterial species were used as scaffolds for the design of a minimal peptide library based on the active helical domain of each bacteriocin sequence. 95 synthetic peptide variants of each scaffold peptide, designated Syn-enterocin, Syn-sordellicin, Syn-larvacin, and Syn-xiamensin, were designed and synthesized from each scaffold sequence based on defined biophysical parameters. A total of 384 total peptides were assessed for antibacterial activity against Gram-negative and Gram-positive bacteria. Minimal Inhibitory Concentrations (MICs) as low as 15.6 nM could be observed for the most potent peptide candidate tested, with no significant cytotoxicity to eukaryotic cells. Our work demonstrates for the first time a general workflow of using minimal domains of natural bacteriocin sequences as scaffolds to design and rapidly synthesize a library of bacteriocin-based antimicrobial peptide variants for evaluation.

15.
PLoS One ; 15(11): e0234100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151962

RESUMO

Von Hippel-Lindau disease (VHL) is an autosomal dominant rare disease that causes the formation of angiogenic tumors. When functional, pVHL acts as an E3 ubiquitin ligase that negatively regulates hypoxia inducible factor (HIF). Genetic mutations that perturb the structure of pVHL result in dysregulation of HIF, causing a wide array of tumor pathologies including retinal angioma, pheochromocytoma, central nervous system hemangioblastoma, and clear cell renal carcinoma. These VHL-related cancers occur throughout the lifetime of the patient, requiring frequent intervention procedures, such as surgery, to remove the tumors. Although VHL is classified as a rare disease (1 in 39,000 to 1 in 91,000 affected) there is a large heterogeneity in genetic mutations listed for observed pathologies. Understanding how these specific mutations correlate with the myriad of observed pathologies for VHL could provide clinicians insight into the potential severity and onset of disease. Using a select set of 285 ClinVar mutations in VHL, we developed a multiparametric scoring algorithm to evaluate the overall clinical severity of missense mutations in pVHL. The mutations were assessed according to eight weighted parameters as a comprehensive evaluation of protein misfolding and malfunction. Higher mutation scores were strongly associated with pathogenicity. Our approach establishes a novel in silico method by which VHL-specific mutations can be assessed for their severity and effect on the biophysical functions of the VHL protein.


Assuntos
Mutação de Sentido Incorreto/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/patologia , Algoritmos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Hemangioblastoma/genética , Hemangioblastoma/patologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Feocromocitoma/genética , Feocromocitoma/patologia
16.
Front Microbiol ; 11: 1857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849448

RESUMO

The outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China in December 2019 has now become a pandemic with no approved therapeutic agent. At the moment, the genomic structure, characteristics, and pathogenic mechanisms of SARS-CoV-2 have been reported. Based upon this information, several drugs including the directly acting antivirals have been proposed to treat people with coronavirus disease 2019 (COVID-19). This rapid review aims to describe the directly acting antivirals that have been examined for use in the management of COVID-19. Searches were conducted in three electronic databases, supplemented with a search on arXiv, bioRxiv, medRxiv, ChinaXiv, ClinicalTrials.gov, and Chinese Clinical Trial Registry for studies examining the use of antivirals in COVID-19 to identify for case reports, case series, observational studies, and randomized controlled studies describing the use of antivirals in COVID-19. Data were extracted independently and presented narratively. A total of 98 studies were included, comprising of 38 published studies and 60 registered clinical trials. These drugs include the broad spectrum antivirals such as umifenovir, protease inhibitors such as lopinavir/ritonavir as well as the RNA-dependent RNA polymerase inhibitors, remdesivir, and favipiravir. Other drugs that have been used include the nucleosidase inhibitors and polymerase acidic endonuclease inhibitors which are currently approved for prevention of influenza infections. While some of the drugs appear promising in small case series and reports, more clinical trials currently in progress are required to provide higher quality evidence.

17.
Methods Mol Biol ; 2136: 243-254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32430826

RESUMO

The ability to induce hemolysis, the rupturing of erythrocytes with the consequent release of their intracellular contents, is a phenotypic hallmark of a number of microbial toxins. Streptococcus pyogenes or Group A Streptococcus (GAS) is a human pathogen responsible for a wide range of diseases from mild pharyngitis to severe conditions such as toxic shock syndrome. GAS produces a powerful hemolytic toxin called streptolysin S (SLS). Herein, we describe a procedure for the preparation of SLS toxin and the use of two complementary approaches, live microscopy and flow cytometry, to study the effects of the SLS toxin on erythrocytes. In addition to providing insights into SLS-mediated hemolysis, these assays have the potential to be modified for the study of other hemolytic toxins and compounds.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Eritrócitos/efeitos dos fármacos , Estreptolisinas/isolamento & purificação , Estreptolisinas/metabolismo , Proteínas de Bactérias/fisiologia , Eritrócitos/metabolismo , Citometria de Fluxo/métodos , Hemólise/efeitos dos fármacos , Hemólise/fisiologia , Humanos , Microscopia/métodos , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Estreptolisinas/fisiologia
18.
Biochem J ; 477(9): 1613-1630, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32270857

RESUMO

Plasminogen-binding group A streptococcal M-protein (PAM) is a signature surface virulence factor of specific strains of Group A Streptococcus pyogenes (GAS) and is an important tight binding protein for human plasminogen (hPg). After activation of PAM-bound hPg to the protease, plasmin (hPm), GAS cells develop invasive surfaces that are critical for their pathogenicity. PAMs are helical dimers in solution, which are sensitive to temperature changes over a physiological temperature range. We previously categorized PAMs into three classes (I-III) based on the number and nature of short tandem α-helical repeats (a1 and a2) in their NH2-terminal A-domains that dictate interactions with hPg/hPm. Class II PAMs are special cases since they only contain the a2-repeat, while Class I and Class III PAMs encompass complete a1a2-repeats. All dimeric PAMs tightly associate with hPg, regardless of their categories, but monomeric Class II PAMs bind to hPg much weaker than their Class I and Class III monomeric counterparts. Additionally, since the A-domains of Class II PAMs comprise different residues from other PAMs, the issue emerges as to whether Class II PAMs utilize different amino acid side chains for interactions with hPg. Herein, through NMR-refined structural analyses, we elucidate the atomic-level hPg-binding mechanisms adopted by two representative Class II PAMs. Furthermore, we develop an evolutionary model that explains from unique structural perspectives why PAMs develop variable A-domains with regard to hPg-binding affinity.


Assuntos
Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte , Interações entre Hospedeiro e Microrganismos , Plasminogênio/metabolismo , Conformação Proteica em alfa-Hélice , Streptococcus pyogenes/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Evolução Molecular , Fibrinolisina/metabolismo , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fatores de Virulência/metabolismo
19.
J Bacteriol ; 202(11)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32205460

RESUMO

Streptococcus pyogenes, or group A Streptococcus (GAS), is both a pathogen and an asymptomatic colonizer of human hosts and produces a large number of surface-expressed and secreted factors that contribute to a variety of infection outcomes. The GAS-secreted cysteine protease SpeB has been well studied for its effects on the human host; however, despite its broad proteolytic activity, studies on how this factor is utilized in polymicrobial environments are lacking. Here, we utilized various forms of SpeB protease to evaluate its antimicrobial and antibiofilm properties against the clinically important human colonizer Staphylococcus aureus, which occupies niches similar to those of GAS. For our investigation, we used a skin-tropic GAS strain, AP53CovS+, and its isogenic ΔspeB mutant to compare the production and activity of native SpeB protease. We also generated active and inactive forms of recombinant purified SpeB for functional studies. We demonstrate that SpeB exhibits potent biofilm disruption activity at multiple stages of S. aureus biofilm formation. We hypothesized that the surface-expressed adhesin SdrC in S. aureus was cleaved by SpeB, which contributed to the observed biofilm disruption. Indeed, we found that SpeB cleaved recombinant SdrC in vitro and in the context of the full S. aureus biofilm. Our results suggest an understudied role for the broadly proteolytic SpeB as an important factor for GAS colonization and competition with other microorganisms in its niche.IMPORTANCEStreptococcus pyogenes (GAS) causes a range of diseases in humans, ranging from mild to severe, and produces many virulence factors in order to be a successful pathogen. One factor produced by many GAS strains is the protease SpeB, which has been studied for its ability to cleave and degrade human proteins, an important factor in GAS pathogenesis. An understudied aspect of SpeB is the manner in which its broad proteolytic activity affects other microorganisms that co-occupy niches similar to that of GAS. The significance of the research reported herein is the demonstration that SpeB can degrade the biofilms of the human pathogen Staphylococcus aureus, which has important implications for how SpeB may be utilized by GAS to successfully compete in a polymicrobial environment.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Exotoxinas/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/fisiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/genética , Exotoxinas/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Staphylococcus aureus/genética , Streptococcus pyogenes/genética
20.
J Bacteriol ; 202(10)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32123038

RESUMO

Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a ß-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Plasminogênio/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Humanos , Proteínas de Membrana/genética , Ligação Proteica , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...